Modeling coherent errors in quantum error correction

ثبت نشده
چکیده

Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Paulimodel. Herewe examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ò)under the repetition code.We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit.Wefind that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than ( ) d 1 n error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failuremore quickly than the Paulimodel would predict, and thismay need to be combated with coherent suppressionmethods at the physical level or larger codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Are Quantum Computing Models Realistic?

The commonly used circuit model of quantum computing leaves out the problems of state preparation (how to get the individual particles into a specific state while ensuring that the particles remain entangled), particle statistics (indistinguishability of quantum particles belonging to the same coherent state), and error correction (current techniques cannot correct all small errors). The initia...

متن کامل

Approximate Quantum Error Correction

X iv :q ua nt -p h/ 01 12 10 6v 1 1 8 D ec 2 00 1 Approximate quantum error correction Benjamin Schumacher and Michael D. Westmoreland February 1, 2008 Department of Physics, Kenyon College, Gambier, OH 43022 USA Department of Mathematical Sciences, Denison University, Granville, OH 43023 USA Abstract The errors that arise in a quantum channel can be corrected perfectly if and only if the chann...

متن کامل

How to correct small quantum errors

The theory of quantum error correction is a cornerstone of quantum information processing. It shows that quantum data can be protected against decoherence effects, which otherwise would render many of the new quantum applications practically impossible. In this paper we give a self contained introduction to this theory and to the closely related concept of quantum channel capacities. We show, i...

متن کامل

ua nt - p h / 96 10 03 1 v 3 1 9 M ay 1 99 7 Correcting the effects of spontaneous emission on cold - trapped ions

We propose two quantum error correction schemes which increase the maximum storage time for qubits in a system of cold trapped ions, using a minimal number of ancillary qubits. Both schemes consider only the errors introduced by the decoherence due to spontaneous emission from the upper levels of the ions. Continuous monitoring of the ion fluorescence is used in conjunction with selective coher...

متن کامل

ua nt - p h / 96 10 03 1 v 1 2 1 O ct 1 99 6 Correcting the effects of spontaneous emission on cold trapped ions

We propose two quantum error correction schemes which increase the maximum storage time for qubits in a system of cold trapped ions, using a minimal number of ancillary qubits. Both schemes consider only the errors introduced by the decoherence due to spontaneous emission from the upper levels of the ions. A watchdog approach is adopted in conjunction with selective coherent feedback to elimina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017